Appendix G

N92-10048²

SPACE PROPULSION TECHNOLOGY DIVISION

NASA Lewis Research Cente

560056 2 MPD THRUSTER TECHNOLOGY

ROGER M. MYERS

SVERDRUP TECHNOLOGY NASA LEWIS RESEARCH CENTER

MAY 16, 1991

SPACE PROPULSION TECHNOLOGY DIVISION

IN-HOUSE PROGRAM OVERVIEW

- RE-ESTABLISHED IN 1987
- FOCUSSED ON STEADY-STATE THRUSTERS AT POWERS < 1 MW
- DEVELOPED PERFORMANCE MEASUREMENT AND DIAGNOSTICS TECHNOLOGIES FOR HIGH POWER THRUSTERS
- DEVELOPING MHD CODE
- GOALS ARE TO ESTABLISH
 - PERFORMANCE AND LIFE LIMITATIONS
 - INFLUENCE OF APPLIED FIELDS
 - PROPELLANT EFFECTS
 - SCALING LAWS

MPD THRUSTER TEST STAND

NASA Lewis Research Confe

HIGH POWER ELECTRIC PROPULSION (MPD)

DEMONSTRATED MPD THRUSTER POWER

DEMONSTRATED MPD THRUSTER POWER INCREASING RAPIDLY

NASA

MPD Thruster Technology

Performance Measured With Hydrogen and Argon

Performance dramatically improved with hydrogen

- Efficiency increased by 2X
- I_{SP} increased by 50%

CD-91-54824

SPACE PROPULSION TECHNOLOGY DIVISION

MPD Thruster Technology

Thruster Performance Geometry and Applied Field Effects

 $Jd = 1000 A, \dot{m} = 0.1 g/s argon$ O 2 inch diameter anode ☐ 3 inch diameter anode .3 △ 4 inch diameter anode 1800 Specific 1400 **Efficiency** impulse, .1 1000 600 .20 .05 0 Applied Magnetic Field, T

- Efficiency increases with applied field strength
- Specific impulse increases with both anode radius and applied field strength

NASA

MPD Thruster Technology

Anode Power Deposition Applied Field and Geometry Effects

Increasing applied field strength and anode diameter decrease anode power fraction

MPD Thruster Technology

Scaling Issues

- Megawatt class operation required for missions of interest
- Cannot operate megawatt class steady-state in current facilities
- Must be able to correlate MW class pulsed thruster operation and steady state data
- Data must enable rational extrapolation to high power levels

How do we realistically study MPD thruster performance and life using currently available facilities?

CD-91-54828

SPACE PROPULSION TECHNOLOGY DIVISION

MPD Thruster Technology

Diagnostics

- X-Y probe positioning stand
 - Electrostatic probes
 - enclosed current contours
 - Axial applied B field distribution
- Plume imaging
 - Correlate ion density distribution with applied field
- Spectoscopy
 - Non-invasive temperature and density measurements

MPD Thruster Modeling

Comparison With U. Stuttgart Model/Experiment

(6kA, 6 g/s)

Stuttgart-experiment

Stuttgart-model

NASA LeRC-model

Current fractions into anode segments

 Segment 1:
 46%
 44%
 51%

 Segment 2:
 27%
 27%
 22%

 Segment 3:
 27%
 29%
 27%

NASA LeRC code in agreement with Stuttgart MPDT experiment/model

MPD Thruster Modeling

Comparison with Princeton University

Half-Scale Benchmark Thruster

ENCLOSED CURRENT CONTOURS (MEASURED)

ENCLOSED CURRENT CONTOURS (PREDICTED) 12.4 kA, 1.5 g/s, STEADY-STATE OPERATION

SPACE PROPULSION TECHNOLOGY DIVISION

MPD Thruster Modeling

Comparison with Princeton University

Half-Scale Flared Anode Thruster

ENCLOSED CURRENT CONTOURS (MEASURED)
7.9 kA, 3 g/s. QUASI-STEADY OPERATION

ENCLOSED CURRENT CONTOURS (PREDICTED) 7.9 kA, 3 g/s. STEADY-STATE OPERATION

Thrust Characteristics

MPD Thruster Modeling

Status

- Self-field version of MPDT code operational
 - Modest execution times 3-5 hours VAX-CPU)
 - General agreement with experimental results
 - Thruster performance evaluations underway
- Applied-field version of code under development
 - Routines for applied-B distributions incorporated
 - Preliminary testing/modification in progress

CD-91-54840

SPACE PROPULSION TECHNOLOGY DIVISION

KEY TECHNICAL ISSUES

KEY SCALING ISSUES

- TWO PRIMARY CONCERNS
 - POWER LEVEL SCALING
 - QUASI-STEADY VS. STEADY STATE
- ISSUES MUST BE ADDRESSED USING
 - THEORETICAL MODELS TO ESTABLISH TRENDS AND DEPENDENCIES
 - HGIH FIDELITY PERFORMANCE MEASUREMENTS
 - DETAILED DIAGNOSTICS OF PLASMA AND ELECTRODE PROCESSES USED TO:
 - A. ESTABLISH FUNDAMENTAL RELATIONSHIPS
 - **B. VERIFY MODELS**

SPACE PROPULSION TECHNOLOGY DIVISION

PERFORMANCE EXPECTATIONS:

MUST EVALUATE EFFECTS OF :

- PROPELLANT AND APPLIED FIELD
- ELECTRODE SIZE AND SHAPE
- PROPELLANT INJECTION

RELATION BETWEEN QUASI-STEADY AND STEADY-STATE:

- MUST ESTABLISH DATA BASE WITH CORRECT PROPELLANT IN THE APPROPRIATE OPERATING RANGE (J $^2/\dot{m}$?)
- MUST MEASURE PERFORMANCE, CURRENT DISTRIBUTIONS, PLASMA AND ELECTRODE PARAMETERS

PERFORMANCE EXPECTATIONS

- NOT CORRELATED WITH POWER
- STRONGLY INFLUENCED BY
 - PROPELLANT CHOICE
 - APPLIED OR SELF-FIELD

^{*} Sovey, J. and Mantenieks, M. "Performance and Lifetime Assessment of Magnetoplasmadynamic Arc Thruster Technology", J. Propulsion and Power, Vol.7, No. 1, Jan-Feb 1991

SPACE PROPULSION TECHNOLOGY DIVISION

FACILITY REQUIREMENTS

THRUST

DISCHARGE VOLTAGE

4" D, 3"L ANODE, 0.1 G/S ARGON, 1500 A DISCHARGE, Bz = .1 T

FACILITY REQUIREMENTS

EFFICIENCY

CHANGE IN Van AND Vd

Similar anode heat xfer effect observed by Saber with self-field thrusters

4" D, 3"L ANODE, 0.1 G/S ARGON, 1500 A DISCHARGE, Bz = .1 T

SPACE PROPULSION TECHNOLOGY DIVISION

POTENTIAL MPDT FACILITIES

FY	FACILITY	THRUSTER PO' H2	WER, MW AR	OPERATION TIME, HR	ESTIMATED COST, \$K
PRESENT	LERC T5,T6	0.1 (DEM)	0.22 (DEM)	CONT	******
1992	LERC T5	0.7-1	1	1 - 2	250 K
1993	LERC T5	1 - 1.5	2	4 - 6	400 K
1995	LERC T6	1 - 1.5	2	'CONT.'	3500 - 5000
1 9 95	LLNL MFTF	1-5		'CONT.'	5000 - 7000
1998	LERC T6	1 - 5	1 - 5	'CONT.'	TBD

MATERIAL LIMITATIONS

ANODE:

- MEASURED HEAT FLUX AT HIGH POWER > 5 KW/CM²
 - LITHIUM HEAT PIPES LIMITED TO < 0.5 KW/CM²
 - OPTIMIZED BEAM DUMP (Cu) LIMITED TO ~ 5 KW/CM²
 - SSME THROAT HEAT FLUX ~ 16 KW/CM² (relevance?)

CATHODE:

- CURRENT DENSITIES AT HIGH POWER > 100 A/CM2*
 - LONG LIFE CATHODES LIMITED TO CURRENT DENSITIES ≤ 20 A/CM² (LOW W.F. TWT CATHODES)

INSULATORS:

- KNOWN TO FAIL AFTER PROLONGED EXPOSURE TO UV AND HIGH TEMPERATURE
- WE MUST SELECT GEOMETRIES WHERE PERFORMANCE AND ENGINEERING LIMITS CAN BE EVALUATED
- PRINCETON UNIVERSITY

SPACE PROPULSION TECHNOLOGY DIVISION

FACILITY LIMITATIONS:

- MUST MEASURE PERFORMANCE AT PRESSURES < 5 X 10 ⁻⁴ T
- FACILITY PRESSURE HAS LARGE EFFECT ON ANODE HEAT XFER, NOT CLEAR ON CATHODE

THRUSTER VIABILITY:

- SHOULD FOCUS ON DEVICES WHICH MATCH ENGINEERING LIMITS FOR:

ANODE HEAT TRANSFER CATHODE CURRENT DENSITY INSULATOR LIMITS